首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   2篇
地质学   1篇
  2007年   1篇
  2006年   1篇
  1987年   1篇
排序方式: 共有3条查询结果,搜索用时 31 毫秒
1
1.
Ground water flow and travel time are dependent on stratigraphic architecture, which is governed by competing processes that control the spatial and temporal distribution of accommodation and sediment supply. Accommodation is the amount of space in which sediment may accumulate as defined by the difference between the energy gradient and the topographic surface. The temporal and spatial distribution of accommodation is affected by processes that change the distribution of energy (e.g., sea level or subsidence). Fluvial stratigraphic units, generated by FLUVSIM (a stratigraphic simulator based on accommodation and sediment supply), with varying magnitudes and causes of accommodation, were incorporated into a hydraulic regime using MODFLOW (a ground water flow simulator), and particles were tracked using MODPATH (a particle-tracking algorithm). These experiments illustrate that the dominant type of accommodation process influences the degree of continuity of stratigraphic units and thus affects ground water flow and transport. When the hydraulic gradient is parallel to the axis of the fluvial system in the depositional environment, shorter travel times occur in low-total accommodation environments and longer travel times in high-total accommodation environments. Given the same total accommodation, travel times are longer when sea-level change is the dominant process than those in systems dominated by subsidence.  相似文献   
2.
A strong He-U anomaly, discovered in the Thelon basin of the N.W.T. during a regional U exploration program in 1981, was studied in detail in 1982. The anomaly is confined to a 3-km2 lake situated 160 km northwest of Baker Lake. Lake bottom water and sediment samples taken in June through the ice on a 50 m × 50 m grid, were analyzed for a number of trace and minor elements.In the lake sediments He and U were highly anomalous and parallel the strong anomaly patterns of He observed in the water. Median and maximum values in the sediments were 57 ppm and 396 ppm U, and 296 nL/L and 13870 nL/L He. Regional medians were 4.3 ppm U and 50 nL/L He. Se and V in sediments gave weak but similar anomaly patterns to those observed for U and He.The anomaly is somewhat of an enigma. The unusually high U content indicates an oxidizing, hence, near surface, water regime, and the highly anomalous He flux into the lake and a thick cover of permafrost in the region indicate a very deep source where conditions are normally reducing, rendering U immobile.Coincident anomaly patterns and increasing concentrations with depth of minor and trace elements and gases in the lake water prove that groundwater is the source of the anomalies. Contoured element maps indicate that this groundwater enters the lake in at least four places.The fact that up to 35 ppb U, 6 ppm dissolved O2 and virtually no Fe and Mn, were detected in lake waters above groundwater entry points indicates that the groundwaters were oxidizing with respect to these elements. This is indeed surprising because permafrost is believed to be about 300 m thick in the region; at such depths groundwaters are usually rich in Fe and void of U.The highly anomalous He in this lake indicates deep fractures which serve as conduits for mineralized water entering the lake from depth and creating a frost-free window in the permafrost. The fractures probably penetrate well into the basement for only major deep fractures are known to produce such strong He anomalies. The additional presence of anomalous U suggests U mineralization at depth.  相似文献   
3.
Edington D  Poeter E 《Ground water》2006,44(6):826-831
Ground water flow and travel time are dependent on stratigraphic architecture, which is governed by competing processes that control the spatial and temporal distribution of accommodation and sediment supply. Accommodation is the amount of space in which sediment may accumulate as defined by the difference between the energy gradient and the topographic surface. The temporal and spatial distribution of accommodation is affected by processes that change the distribution of energy (e.g., sea level or subsidence). Fluvial stratigraphic units, generated by FLUVSIM (a stratigraphic simulator based on accommodation and sediment supply), with varying magnitudes and causes of accommodation, were incorporated into a hydraulic regime using MODFLOW (a ground water flow simulator), and particles were tracked using MODPATH (a particle-tracking algorithm). These experiments illustrate that the dominant type of accommodation process influences the degree of continuity of stratigraphic units and thus affects ground water flow and transport. When the hydraulic gradient is parallel to the axis of the fluvial system in the depositional environment, shorter travel times occur in low-total accommodation environments and longer travel times in high-total accommodation environments. Given the same total accommodation, travel times are longer when sea-level change is the dominant process than those in systems dominated by subsidence.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号